Search results for "Affine Lie algebra"

showing 10 items of 17 documents

A class of nilpotent Lie algebras admitting a compact subgroup of automorphisms

2017

Abstract The realification of the ( 2 n + 1 ) -dimensional complex Heisenberg Lie algebra is a ( 4 n + 2 ) -dimensional real nilpotent Lie algebra with a 2-dimensional commutator ideal coinciding with the centre, and admitting the compact algebra sp ( n ) of derivations. We investigate, in general, whether a real nilpotent Lie algebra with 2-dimensional commutator ideal coinciding with the centre admits a compact Lie algebra of derivations. This also gives us the occasion to revisit a series of classic results, with the expressed aim of attracting the interest of a broader audience.

Discrete mathematicsPure mathematicsOscillator algebra010102 general mathematicsUniversal enveloping algebra010103 numerical & computational mathematics01 natural sciencesAffine Lie algebraLie conformal algebraGraded Lie algebraNilpotent Lie algebraComputational Theory and MathematicsLie algebraCompact Lie algebraSettore MAT/03 - GeometriaGeometry and Topology0101 mathematicsCompact derivationGeneralized Kac–Moody algebraAnalysisMathematicsDifferential Geometry and its Applications
researchProduct

Annihilators of tensor density modules

2007

Abstract We describe the two-sided ideals in the universal enveloping algebras of the Lie algebras of vector fields on the line and the circle which annihilate the tensor density modules. Both of these Lie algebras contain the projective subalgebra, a copy of sl 2 . The restrictions of the tensor density modules to this subalgebra are duals of Verma modules (of sl 2 ) for Vec ( R ) and principal series modules (of sl 2 ) for Vec ( S 1 ) . Thus our results are related to the well-known theorem of Duflo describing the annihilating ideals of Verma modules of reductive Lie algebras. We find that, in general, the annihilator of a tensor density module of Vec ( R ) or Vec ( S 1 ) is generated by …

Tensor density modulesPure mathematicsVerma moduleAlgebra and Number TheorySubalgebraMathematics::Rings and AlgebrasUniversal enveloping algebraGeneralized Verma moduleAffine Lie algebraLie conformal algebraAnnihilating idealsMathematics::Quantum AlgebraTensor product of modulesTensor densityMathematics::Representation TheoryMathematicsJournal of Algebra
researchProduct

Lie Algebras Generated by Extremal Elements

1999

We study Lie algebras generated by extremal elements (i.e., elements spanning inner ideals of L) over a field of characteristic distinct from 2. We prove that any Lie algebra generated by a finite number of extremal elements is finite dimensional. The minimal number of extremal generators for the Lie algebras of type An, Bn (n>2), Cn (n>1), Dn (n>3), En (n=6,7,8), F4 and G2 are shown to be n+1, n+1, 2n, n, 5, 5, and 4 in the respective cases. These results are related to group theoretic ones for the corresponding Chevalley groups.

17B05[ MATH.MATH-GR ] Mathematics [math]/Group Theory [math.GR]Non-associative algebraAdjoint representationGroup Theory (math.GR)01 natural sciences[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]Graded Lie algebraCombinatoricsMathematics - Algebraic Geometry0103 physical sciences[MATH.MATH-RA] Mathematics [math]/Rings and Algebras [math.RA]FOS: Mathematics0101 mathematicsAlgebraic Geometry (math.AG)[MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR]MathematicsDiscrete mathematicsAlgebra and Number TheorySimple Lie group010102 general mathematics[MATH.MATH-RA]Mathematics [math]/Rings and Algebras [math.RA]20D06[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG]Mathematics - Rings and AlgebrasKilling formAffine Lie algebra[ MATH.MATH-RA ] Mathematics [math]/Rings and Algebras [math.RA]Lie conformal algebra[ MATH.MATH-AG ] Mathematics [math]/Algebraic Geometry [math.AG]Adjoint representation of a Lie algebraRings and Algebras (math.RA)17B05; 20D06010307 mathematical physics[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]Mathematics - Group TheoryJournal of Algebra
researchProduct

The graded Lie algebra structure of Lie superalgebra deformation theory

1989

We show how Lie superalgebra deformation theory can be treated by graded Lie algebras formalism. Rigidity and integrability theorems are obtained.

Pure mathematics[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT]Simple Lie groupMathematics::Rings and Algebras010102 general mathematicsStatistical and Nonlinear PhysicsLie superalgebraKilling form01 natural sciencesAffine Lie algebra[ MATH.MATH-RT ] Mathematics [math]/Representation Theory [math.RT]Lie conformal algebraGraded Lie algebraAlgebraAdjoint representation of a Lie algebraRepresentation of a Lie group0103 physical sciences010307 mathematical physics0101 mathematicsComputingMilieux_MISCELLANEOUSComputer Science::DatabasesMathematical PhysicsMathematicsLetters in Mathematical Physics
researchProduct

The enveloping algebra of the Lie superalgebra osp(1,2)

1990

International audience

Algebra and Number Theory[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT]010102 general mathematicsCurrent algebraUniversal enveloping algebraLie superalgebraN = 2 superconformal algebra01 natural sciencesAffine Lie algebraSuper-Poincaré algebraGraded Lie algebraLie conformal algebra[ MATH.MATH-RT ] Mathematics [math]/Representation Theory [math.RT]Algebra0103 physical sciences010307 mathematical physics0101 mathematicsMathematics::Representation TheoryComputingMilieux_MISCELLANEOUSMathematics
researchProduct

Algebras of pseudodifferential operators on complete manifolds

2003

In several influential works, Melrose has studied examples of non-compact manifolds M 0 M_0 whose large scale geometry is described by a Lie algebra of vector fields V ⊂ Γ ( M ; T M ) \mathcal V \subset \Gamma (M;TM) on a compactification of M 0 M_0 to a manifold with corners M M . The geometry of these manifolds—called “manifolds with a Lie structure at infinity”—was studied from an axiomatic point of view in a previous paper of ours. In this paper, we define and study an algebra Ψ 1 , 0 , V ∞ ( M 0 ) \Psi _{1,0,\mathcal V}^\infty (M_0) of pseudodifferential operators canonically associated to a manifold M 0 M_0 with a Lie structure at infinity V ⊂ Γ ( M ; T M ) \mathcal V \subset \Gamma (…

Filtered algebraCombinatoricsGeneral MathematicsAlgebra representationCurrent algebraUniversal enveloping algebraAffine Lie algebraPoisson algebraLie conformal algebraMathematicsGraded Lie algebraElectronic Research Announcements of the American Mathematical Society
researchProduct

Indecomposable modules over the Virasoro Lie algebra and a conjecture of V. Kac

1991

We consider a class of indecomposable modules over the Virasoro Lie algebra that we call bounded admissible modules. We get results concerning the center and the dimensions of the weight spaces. We prove that these modules always contain a submodule with one-dimensional weight spaces. From this follows the proof of a conjecture of V. Kac concerning the classification of simple admissible modules.

Discrete mathematicsPure mathematics17B10Statistical and Nonlinear PhysicsUniversal enveloping algebraLie superalgebraAffine Lie algebra17B68Lie conformal algebraGraded Lie algebraAlgebra representationVirasoro algebraMathematics::Representation TheoryIndecomposable moduleMathematical PhysicsMathematicsCommunications in Mathematical Physics
researchProduct

Representations of Affine Kac-Moody Algebras

1989

In the first chapter we explained how simple finite-dimensional Lie algebras can be completely characterized in terms of their Cartan matrices or Dynkin diagrams. The same holds for an arbitrary semisim-ple finite-dimensional Lie algebra. A semisimple Lie algebra is a direct sum of simple ideals which are pairwise orthogonal with respect to the Killing form. It follows that the Cartan matrix of a semisimple Lie algebra decomposes to a block diagonal form, each block representing a simple ideal. Similarly, the Dynkin diagram is a disconnected union of Dynkin diagrams of simple Lie algebras. Next we shall study certain infinite-dimensional Lie algebras which have many similarities with the si…

Pure mathematicsQuantum affine algebraDynkin diagramMathematics::Quantum AlgebraLie algebraCartan matrixNest algebraKilling formMathematics::Representation TheorySemisimple Lie algebraAffine Lie algebraMathematics
researchProduct

The Virasoro Algebra

1989

In this chapter we shall study the Lie algebra Vect S1 of vector fields on a circle and some of its generalizations. The Lie algebra Vect S1 has a central extension, the Virasoro algebra. The representation theory of the Virasoro algebra is closely related to the representation theory of affine Lie algebras. In fact, through the Sugawara construction, to be defined below, a highest weight representation of an affine Lie algebra carries always a highest weight representation of the Virasoro algebra. All the irreducible highest weight representations of the Virasoro algebra are known and they can be exponentiated to representations of associated infinite-dimensional Lie groups. The representa…

Filtered algebraHigh Energy Physics::TheoryPure mathematicsMathematics::Quantum AlgebraCurrent algebraCellular algebraVirasoro algebraUniversal enveloping algebraWitt algebraAffine Lie algebraMathematicsSupersymmetry algebra
researchProduct

COMPLEX STRUCTURES ON INDECOMPOSABLE 6-DIMENSIONAL NILPOTENT REAL LIE ALGEBRAS

2007

We compute all complex structures on indecomposable 6-dimensional real Lie algebras and their equivalence classes. We also give for each of them a global holomorphic chart on the connected simply connected Lie group associated to the real Lie algebra and write down the multiplication in that chart.

General MathematicsSimple Lie groupReal formMathematics - Rings and Algebras17B30Killing formAffine Lie algebraLie conformal algebraGraded Lie algebraAlgebra53C15Adjoint representation of a Lie algebraRepresentation of a Lie groupRings and Algebras (math.RA)FOS: Mathematics17B30;53C15MathematicsInternational Journal of Algebra and Computation
researchProduct